Given: QRST is a parallelogram, X is the midpoint of QS

Prove: Diagonals bisect each other in a parallelogram

Statement	Reason
QRST is a parallelogram, X	Given
is the midpoint of QS	
QT//SR	Opposite sides of a
	parallelogram are parallel
$QX \cong SX$	Definition of a Midpoint
$\angle QTX \cong \angle SRX$	AIA
$\angle TQX \cong \angle RSX$	AIA
$\Delta QTX \cong \Delta SRX$	AAS
$TX \cong RX$	СРСТС
X is the midpoint of RT	Definition of a Midpoint
∴Diagonals bisect each	Definition of a Bisector
other	

8. two-column

Given: ABCH and DCGF are parallelograms.

Prove: $\angle A \cong \angle F$

27. two-column

Given: □WXYZ

Prove: $\triangle WXZ \cong \triangle YZX$ (Theorem 6.8)

20. Given: *ABCD* is a rectangle. **Prove:** $\triangle ADC \cong \triangle BCD$

23. Given: WXTV and ZYVT are

parallelograms.

Prove: $\overline{WX} \cong \overline{ZY}$

28. two-column

Given: $\square PQRS$ Prove: $\overline{PQ} \cong \overline{RS}, \overline{QR} \cong \overline{SP}$ (Theorem 6.3)

24. Given: $\square BDHA$, $\overline{CA} \cong \overline{CG}$ **Prove:** $\angle BDH \cong \angle G$

Hint: Isosceles Triangle

29. paragraph Given: $\square ACDE$ is a parallelograprove: \overline{EC} bisects \overline{AD} .

(Theorem 6.7)

