AP Calculus AB
Name \qquad
Chapter 4
AP Practice

1. The regions A, B, and C in the figure at right are bounded by the graph of the function f and the x axis. If the area of each region is 3 , what is the value of:

$$
\int_{-4}^{2}(f(x)+1) d x
$$

a. 3
b. 4
c. 7
d. 9
e. 10

2. Evaluate $\frac{d}{d x} \int_{3}^{x^{3}} e^{2 t} d t$
a. $e^{2 x^{3}}$
b. $e^{x^{3}}$
c. $\frac{1}{2} e^{2 x^{3}}-\frac{1}{2} e^{3}$
d. $e^{2 x^{3}} \cdot 3 x^{2}$
e. $e^{x^{3}} \cdot 3 x^{2}$
3. The graph of f^{\prime}, the derivative of f is the line shown in the figure below. If $f(0)=-2$, then $f(-2)=$?
a. -10
b. -6
c. 0
d. 4
e. 6

4. The graph of a piecewise function $f,-4 \leq t \leq 4$, consists of two line segments and a semicircle as shown at right. If function $g(x)=\int_{2}^{x} f(t) d t$, find $g(-4)$
a. $3-\pi$
b. $3-2 \pi$
c. $1-2 \pi$
d. $2 \pi-3$
e. $\pi-3$

5. A factory is currently producing $10 \sqrt[3]{2 t+1}$ machines per hour. If a day starts at $t=0$, how many machines are produced in and 8 -hour day
a. 10
b. 16
c. 26
d. 121
e. 160
6. The function f is continuous on the closed interval $[-2,10]$ and has values given in the table below.

x	-2	0	3	4	7	9	10
$f(x)$	3	6	-1	2	8	4	-3

Using the subintervals $[-2,3],[3,7]$, and $[7,10]$ find the midpoint Riemann sum for $\int_{-2}^{10} f(x) d x$.
a. 18
b. 35
c. 50
d. 55
e. 95
7. What is the value of $\int_{-1}^{5} f^{\prime}(2 t) d t$?
a. $2 f(10)-2 f(-2)$
b. $1 / 2 f(5)-1 / 2 f(-1)$
c. $1 / 2 f(10)-1 / 2 f(-2)$
d. $f(10)-f(-2)$
e. $2 f(5)-2 f(-1)$

Name \qquad Chapter 4 Free Response

Directions: do these problems on a separate sheet of paper. Please work neatly and follow directions

1. For $-4 \leq t \leq 2$ the graph of a function f is shown below. Let $g(x)=\int_{0}^{\frac{1}{2} x} f(t) d t$

The graph of $f(t)$

a. What is the domain of $g(x)$?
b. Compute, or state that it does not exist, $g(-2), g^{\prime}(-2), g^{\prime \prime}(-2)$.
c. Find all the values of x where $g(x)$ has a relative minimum. Justify your answer.
d. Find all values of x in the open interval $(-8,4)$ for which the graph of g has a point of inflection
2. The graph of $y=f(x)$, shown below, consists of three line segments and a semicircle.

a. Find the average rate of change for the function f over the interval $[-4,4]$.
b. Find the average value for the function f over the interval $[-4,4]$

Let function $g(x)=\int_{-2}^{x} f(t) d t$ for all x in the closed interval $[-4,4]$.
c. Which is larger $g(-4)$ or $g(-2)$? Explain why.
d. Write an equation for the line tangent to the graph of $y=g(x)$ at $x=1$
3. A car is traveling on a straight road with velocity $50 \mathrm{ft} / \mathrm{sec}$ at $t=0$. For $0 \leq t \leq 20$, the car's acceleration $a(t)$, in $f t / \sec ^{2}$, is the piecewise linear function defined by the graph below.

a. Is the velocity of the car increasing at $t=2$ seconds? Why or why not?
b. Is the speed of the car increasing or decreasing at time $t=2$? Give a reason for your answer.
c. At what time in the interval $0 \leq t \leq 20$ is the velocity of the car $50 \mathrm{ft} / \mathrm{sec}$?
d. On the time interval $0 \leq t \leq 20$, what is the car's absolute maximum velocity, in $\mathrm{ft} / \mathrm{sec}$: At what time does it occur? Why?

