8.1 Measures of Angles and Arcs

1.

In $\odot F, \angle C F D \cong \angle D F E, m \angle B F A=7 \mathrm{x}, m \angle A F E=5 x+12$, and $\overline{B E}$ and $\overline{A C}$ are diameters. Find m arc $D C$.
2.

In $\odot O, \overline{E C}$ and $\overline{A B}$ are diameters, and $\angle B O D \cong \angle D O E \cong \angle E O F \cong \angle F O A$. Find \mathbf{m} arc BC.
3. Find the length of arc CB if $\angle C D B=27 x-14$ $\& \angle C A B=\left(x^{2}+17 x+42\right)^{\circ}$

4. Find $m \angle B A D$ if BC is a diameter in Circle A , and the measure of arc DC is 102°.

5. Find m arc $H F$ if FG is a diameter in Circle E , and the measure of arc HG is 34°.

6. Find m Arc BE if $\angle B A E \cong \angle E A D$, and $\angle D A C=110^{\circ}$

7. Given Quadrilateral STUV, and $\angle T=87^{\circ}$, find m arc SVU.

8. Use the properties of Inscribed Angles to show why $m \angle N+m \angle P=180^{\circ}$

1. 49°. Since $\overline{B E}$ is a diameter, $m \angle B F A+m \angle A F E=180$. Solve the equation, then substitute the value of x to find $m \angle B F A$. Since $\angle B F A$ and $\angle E F C$ are vertical angles, they are congruent. Additionally, use the fact that $m \operatorname{arc} D C=m \angle C F D=\frac{1}{2} m \angle C F E=\frac{1}{2} m \angle B F A$.
2. 90°. Since the diameters $\overline{E C}$ and $\overline{A B}$ are perpendicular, they form right angles which measure 90 . Additionally, since $\angle B O D \cong \angle D O E \cong \angle E O F \cong \angle F O A$, all of those angles are $\frac{1}{2}\left(90^{\circ}\right)$ which is 45°. The measure of an arc is equal to the measure of its central angle, so add any angles that are necessary to find the measure of the given angle and its intercepted arc.
3. $\angle C D B=40^{\circ} \& \angle C A B=80^{\circ}$
4. $m \angle B A D=78^{\circ}$
5. $m \operatorname{arc} H F=146^{\circ}$
6. $\mathrm{m} \mathrm{Arc} \mathrm{BE}=35^{\circ}$
7. m arc $\mathrm{SVU}=174^{\circ}$
8. $m \angle N+m \angle P=180^{\circ}$
$-m \angle N=\frac{1}{2} m \operatorname{arc} O P Q \& m \angle P=\frac{1}{2} m \operatorname{arc} Q N O$
$\frac{1}{2}\left(m \operatorname{arc} O P Q+m \operatorname{arc} Q N O=360^{\circ}\right)$
$\frac{1}{2} m \operatorname{arc} O P Q+\frac{1}{2} m \operatorname{arc} Q N O=180^{\circ}$
$m \angle N+m \angle P=180^{\circ}$
