Anti-differation and Indefinite Integration

An antiderivative is the inverse of a derivative.

Consider the functions

$$
\begin{aligned}
& F(x)=x^{3} ; \quad F^{\prime}(x)=3 x^{2} \\
& F(x)=x^{5}+4 ; F^{\prime}(x)=5 x^{4} \\
& F(x)=x^{5}-7 ; F^{\prime}(x)=5 x^{4}
\end{aligned}
$$

Antiderivatives are a family of functions that come from a given derivative

Differential Equations
General Solutions

$$
\begin{array}{ll}
y^{\prime}=2 & y=2 x+c \\
y^{\prime}=4 x^{3} & y=x^{4}+c
\end{array}
$$

$$
d y=f(x) d x
$$

The question we ask is
"What is y if $d y / d x=f(x)$ "

Rules of Integration

$$
\begin{aligned}
& \int k f(x) d x=k \int f(x) d x \\
& \int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x \\
& \int d x=x+c \\
& \int k d x=k x+c \quad \int x^{n} d x=\frac{x^{n+1}}{n+1}+c
\end{aligned}
$$

Examples
$\int x^{4} d x=\frac{1}{5} x^{5}+c$

$$
\begin{aligned}
& \int 5 x^{2} d x=5 \int x^{2} d x= \\
& 5\left(\frac{1}{3}\right) x^{3}+c=\frac{5}{3} x^{3}+c
\end{aligned}
$$

Initial Conditions
$f^{\prime}(x)=5 x$
$f(x)=\int 5 x d x$
$f(2)=11$

Find y given $y^{\prime}=2(x-1)$ and $(3,2)$ is on the graph.

Solve: Try This
$f^{\prime \prime}(x)=x^{2} ; f^{\prime}(0)=6 ; f(0)=3$

The rate of growth of a population of bacteria is proportional to the square root of t where P is population size and \dagger if time in days. The initial size of the population is 500 and after one day the population is 600 . Estimate the population after 7 days
$\frac{d P}{d t}=k \sqrt{t}$

