

Dec 4-12:23 PM

Differentials

The derivative of a function can often be used to approximate certain function values with a surprising degree of accuracy. To do this, the concept of the differential of the independent variable and the dependent variable must be introduced.

The definition of the derivative of a function y = f(x) as you recall is

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

which represents the slope of the tangent line to the curve at some point (x, f(x)). If Δx is very small $(\Delta x \neq 0)$, then the slope of the tangent is approximately the same as the slope of the secant line through (x, f(x)). That is,

$$f'(x) \approx \left[f(x + \Delta x) - f(x) \right] / \Delta x$$

or equivalently $f'(x) \cdot \Delta x \approx f(x + \Delta x) - f(x)$

Nov 29-11:44 AM

The differential of the independent variable x is written dx and is the same as the change in x, Δx . That is,

$$\chi = 7.23$$

$$dx = \Delta x, \Delta x \neq 0$$

$$hence, f'(x) \cdot dx \approx f(x + \Delta x) - f(x)$$

$$\Delta x = 7$$

$$\Delta x = -.23$$

The differential of the dependent variable y, written dy, is defined to be

$$dy = f'(x) \cdot dx \approx f(x + \Delta x) - f(x)$$
Because $\Delta y = f(x + \Delta x) - f(x)$
you find that $dy = f'(x) dx \approx \Delta y$

The conclusion to be drawn from the preceding discussion is that the differential of y(dy) is approximately equal to the exact change in $y(\Delta y)$, provided that the change in x ($\Delta x = dx$) is relatively small. The smaller the change in x, the closer dy will be to Δy , enabling you to approximate function values close to f(x) (Figure 1)

Figure 1
Approximating a function with differentials.

Nov 29-11:45 AM

Example 1: Find dy for
$$y = x^3 + 5x - 1$$
.
 $y = f(x)$

Because $y = f(x) = x^3 + 5x - 1$
 $y = 3x^4 - x$
 $y = f'(x) = 3x^2 + 5$
 $y = f(x) = 3x^2 + 5$
 $y = f(x) = 3x^2 + 5$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$
 $y = f(x) = x^3 + 5x - 1$

Example 2: Use differentials to approximate the change in the area of a square if the length of its side increases from 6 cm to 6.23 cm.

Let x = length of the side of the square. The area may be expressed as a function of x, where $y = x^2$. The differential dy is

$$f(x) = x^{2}$$

$$f'(x) = 2x$$

$$dy = f'(x) \cdot dx$$

$$dy = 2x \cdot dx$$

Because x is increasing from 6 to 6.23, you find that $\Delta x = dx = .23$ cm; hence,

$$dy = 2 (6 \text{ cm})(.23 \text{ cm})$$

 $dy = 2.76 \text{ cm}^2$

The area of the square will increase by approximately 2.76 cm² as its side length increases from 6 to 6.23. Note that the exact increase in area (Δy) is 2.8129 cm².

Nov 29-11:45 AM

Example 3: Use differentials to approximate the value of $\sqrt[3]{26.55}$ to the nearest thousandth.

Because the function you are applying is $f(x) = \sqrt[3]{x}$, choose a convenient value of x that is a perfect cube and is relatively close to 26.55, namely x = 27. The differential dy is

$$f(x) = \sqrt{x}$$

$$dy = f'(x) dx$$

$$dy = \frac{1}{3} x^{-2/3} dx$$

$$dy = \frac{1}{3x^{2/3}} dx$$

Because x is decreasing from 27 to 26.55, you find that $\Delta x = dx = -.45$; hence,

which implies that
$$\sqrt[3]{26.55}$$
 will be approximately 1/60 less that $\sqrt[3]{27} = 3$; hence,

326.55 = 37 - dy
$$\sqrt[3]{26.55} \approx 3 - \frac{1}{60}$$

 $\approx 3 - .0167$
 ≈ 2.9833

to the nearest thousandth.

Note that the calculator value of $\sqrt[3]{27} = 3$ is 2.983239874, which rounds to the same answer to the nearest thousandth!

Nov 29-11:46 AM

Error propagation

The difference between $f(x + \Delta x) - f(x) = \Delta y$

Measurement error is Δx Exact value is $f(x + \Delta x)$ Measure value is f(x)Propagated error is Δy

Example:

The radius of a ball bearing is measured to be 0.7 in.. If the measurement is correct to within 0.01 inch, estimate the propagated error in the volume V of the ball bearing.

$$V = \frac{4}{3}\pi r^3$$
, with $r = 0.7$ and $-0.01 < \Delta r < 0.01$

$$\Delta V = dV = 4\pi r^2 dr$$

$$dV = 4\pi (0.7)^2 (\pm 0.01)$$

$$\approx \pm 0.06158 \ cu. \ in.$$

propagated error is about 0.06\

Dec 1-11:28 AM

Relative error and percent of error

Is the error too large or small?

A better answer is given in relative terms which is a comparison of dV and V.

$$\frac{dV}{V} = \frac{4\pi r^2 dr}{\frac{4}{3}\pi r^3} = \frac{3}{3} = \frac{\sqrt{3}}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \frac{$$