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The derivative of a function can often be used to approximate certain function
values with a surprising degree of accuracy. To do this, the concept of the
differential of the independent variable and the dependent variable must be
introduced.
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The definition of the derivative of a function y = f{x) as you recall is

v . Ax) -
f(x):il'upofh"'ﬁx ﬂx) —A_i_
Ax

which represents the slope of the tangent line to the curve at some point ( x, f(x)),
If A x is very small (A x = 0), then the slope of the tangent is approximately the
same as the slope of the secant line through ( x, f(x)). Thatis,

£ = [ fie+ &) = fln)| 1Ax
orequivalently f'(x) - Ax = flx + Ax) = f(x)

Ay
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The differential of the independent variable x is written dx and is the same as the
change in x, A x, That is,

_ .23 de=Ax,Ax# 0
7.’ 7 hence, f'(x) - dx = flx + Ax) = fix)
77_-. 1

Ax=z =.27%

The differential of the dependent variable y, written dy, is defined to be
d\f A Cj = \1'
dy=f‘(x]* dx = flx+ Ax) = f(x)
Bccaus.cAy=ﬂ,r+ Ax) - flx)
you ﬁndth Ay
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The conclusion to be drawn from the preceding discussion is that the differential of
y(dy) is approximately equal to the exact change in y(A y), provided that the

change in x (A x = dx) is relatively small. The smaller the change in x, the closer dy
will be to A y, enabling you to approximate function values close to f{x) (Figure 1 )

’( (x + Ax, f(x + Ax))

Figure 1
Approximating a function with differentials.
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Example 1: Find dy fory = x° + 5 x -1,
(5:'%‘\
y 2 Becausey=flx) =x"+ 5x~ |
4= Sx=—X f)=3+5
L=12% [ dfw &\
d‘y‘-(l?.{‘-ﬁdx b= (' +5)- de

Nov 29-11:45 AM



3.9 Differentials.notebook

Example 2: Use differentials to approximate the change in the area of a square if
the length of its side increases from 6 cm to 6.23 cm.

Let x = length of the side of the square. The area may be expressed as a function

of x, where y = x*. The differential dy is

.P()Z)= Xz dy=f(9 - dx
Q‘(%a 2% dy=2x-de

Because x is increasing fronBo 6.23, you find that A x = dx = .23 cm; hence,

- —

dy=2(6cm)(.23cm)
dy=2.76cm’

The area of the square will increase by approximately 2.76 cm? as its side length

increases from 6 to 6.23. Note that the exact increase in area (A y) is 2.8129 cm®.
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Example 3: Use differentials to approximate the value of ¥/ 26.55 to the nearest
thousandth.

Because the function you are applying is f(x) = %/;, choose a convenient value of x
that is a perfect cube and is relatively close to 26.55, namely x = 27. The differential
dyis

L T

27 2SS 4-)a
dx==4g b

Because x is decreasing from 27 to 26.55, you find that A x = dx = —.45; hence,

; R J-,%s- ta.,a.
W ’ 31 5( v A F L

1"\ =27 T 100
FAI=3y ='6l 163‘; 3=

.
Qq
- .

%@@ imatralu l/a0 loce that A/ AT w2 h

ﬁ
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Which implies that M Wil e approximately 1/60 less thnce,

ey -
ﬁss %fdi V26555 3- 7

=~ 3= 0167
~ 29833

126,55 = 2,983

to the nearest thousandth.

Note that the calculator value of ﬁ = 3is 2.983239874, which rounds to the same
answer to the nearest thousandth!
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Error propagation
The difference between  7(x+Ax)- f(x)= Ay

Measurement error is Ax
Exact value is f(x + AX)
Measure value is f(x)
Propagated error is Ay
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Example:

The radius of a ball bearing is measured to be

0.7 in.. If the measurement is correct to within
0.01 inch, estimate the propagated error in the
volume V of the ball bearing.

V= fm?“, with ¥ = 0.7 and —0.01 < Ar <0.01

3
AV =dV = dxr’dr
AV = 47(0.7)°(+0.01)
~ £0.06158 cu. in.

propagated error is about 0.06\
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Relative error and percent of error

Is the error too large or small?

A better answer is given in relative terms which
is a comparison of dV and V.

3
dav :47rr2dr 3 :ﬂﬁ/}d\r

= .= -

voods A O ANr#

~ 3(40.01)
0.7
~ +0.0429 or 4.29%

Dec 1-11:34 AM



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

