Continuity and one-sided limits

Objectives

- Determine the continuity at a point and continuity on an open interval
- Determine one-sided limits and continuity on a closed interval
- Use properties of continuity
- Understand and use the Intermediate Value Theorem (IVT)

Definition of continuity

Continuity at a Point: A function f is continuous at c if the following conditions are met

1. $f(c)$ is defined.
2. $\lim _{x \rightarrow c} f(x)$ exists
3. $\lim _{x \rightarrow c} f(x)=f(c)$

Continuity on an open interval: A function is continuous on an open interval (a, b) if it is continuous at each point in the interval. A function tat is continuous on the entire real line $(-\infty, \infty)$ is everywhere continuous.

Functions can have the following discontinuities:

- Removable: Graph has a hole at some value of x, or the graph has a hole at some value of x on the continuous part and a point not on the continuous part.
- Non-removable: A jump in the graph, usually seen in a piecewise function, or a graph with an asymptote

We look at one-sided limits when our continuous function is on a closed interval.

Limit from the left

$\lim f(x)=L$

$x \rightarrow c^{-}$

Limit from the right

$\lim f(x)=L$

$x \rightarrow c^{+}$

The existence of a limit

Let f be a function and let c and L be real numbers. The limit of $f(x)$ as x approaches c is L if and only if

$$
\lim _{x \rightarrow c^{-}} f(x)=L \text { and } \lim _{x \rightarrow c^{+}} f(x)=L
$$

Definition of continuity on a closed Interval

A function f is continuous on the closed interval $[a, b]$ if it is continuous on the open interval (a, b) and

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { and } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

The function f is continuous from the right at a and continuous from the left at b

Properties of Continuity

If b is a real number and f and g are continuous $a t x=c$, then the following functions are also continuous at c

1. Scalar multiple: bf
2. Sum and Difference: $f \pm g$
3. Product: fg
4. Quotient: f / g, if $g(c) \neq 0$

Functions that are continuous at every point in their domains:

Polynomial Functions

Rational Functions

Radical Functions
Trigonometric functions

Continuity of a composite function

If g is continuous at c and f is continuous at $g(c)$, then the composite function given by $(f \circ g)(x)=f(g(x))$ is continuous at c.

That is: $\quad \lim f(g(x))=f(g(c))$

Intermediate Value Theorem

If f is continuous on the closed interval $[a, b]$ and k is any number between $f(a)$ and $f(b)$, then there is at least one number c in $[a, b]$ such that $f(c)=k$

