Today you will need:

Math Notebook
Small Whiteboard Materials
Homework from Last Night

6.2 Pythagorean Theorem and It's Converse

Obj: Students will understand all parts of the Pythagorean Theorem by practicing on individual whiteboards.

Pythagorean Theorem refers to the relationship between the lengths of the three sides in a right triangle.
> If a and b are the legs of the right triangle and c is the hypotenuse, then $a^{2}+b^{2}=c^{2}$.
> Keep in mind, the c is always the longest side.

Example 1: Find a.

Example 2: Find c.

Individual White Boards.
Find x.

Find x.

If three whole numbers a, b, and c satisfy the equation $a^{2}+b^{2}=c^{2}$, then the numbers a, b, and c form a Pythagorean Triple.

Common Pythagorean Triples

$3,4,5$	$5,12,13$	$8,15,17$	$7,24,25$
$6,8,10$	$10,24,26$	$16,30,34$	$14,48,50$
$9,12,15$	$15,36,39$	$24,45,51$	$21,72,75$
$3 x, 4 x, 5 x$	$5 x, 12 x, 13 x$	$8 x, 15 x, 17 x$	$7 x, 24 x, 25 x$

Converse of the Pythagorean Theorem: If, in a triangle, c is the length of the longest side and the shorter sides have lengths a and b , and $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.

Also, if $a^{2}+b^{2}>c^{2}$ the triangle is acute and, if $\mathrm{a}^{2}+\mathrm{b}^{2}<\mathrm{c}^{2}$ the triangle is obtuse.

Determine whether a triangle with lengths $21,28,35$ is a right triangle.

For the given two sides, determine the length of the third side if the triangle is a right triangle.

Use the Pythagorean Theorem to determine what kind of a triangle is formed by the given lengths.

