Properties of Parallelograms Proof of Theorem 6.4

Prove that if a parallelogram has two consecutive sides congruent, it has four sides congruent.

A B

Given: $\Box ABCD$; $\overline{AD} \cong \overline{AB}$ Prove: $\overline{AD} \cong \overline{AB} \cong \overline{BC} \cong \overline{CD}$

Proof of Theorem 6.4

Proof:

Statements	Reasons
1.	1
2.	2.
3.	3.
4.	4.

Prove that if AC and BD are the diagonals of $\square ABCD$, $\triangle BEC \cong \triangle DEA$ and $\triangle BEA \cong \triangle DEC$.

Given: □ABCD

Prove : △BEC ≅△DEA △BEA ≅△DEC

Choose which reason best completes the following proof.

Proofs.notebook February 09, 2014

