
Find the length of AB.

Measures of Arcs

A. $\ln \bigcirc P$, $m \angle NPM = 46$, \overline{PL} bisects $\angle KPM$, and $\overline{OP} \perp \overline{KN}$. Find m OK.

$$80-46=134$$
 90 $= 134$

$$\widehat{OK}$$
 is a minor arc, so

$$\widehat{mOK} = m \angle KPO$$
.

KON is a semicircle.

$$\widehat{mON} = m \angle NPO$$

$$\widehat{mKON} = \widehat{mOK} + \widehat{mON}$$

Arc Addion Postulate

$$180 = \widehat{mOK} + 90$$

Substuon

$$90 = m\widehat{OK}$$

Subtract 90 from each side.

Measures of Arcs

B. In $\odot P$, $m \angle NPM = 46$, \overline{PL} bisects $\angle KPM$, and

 $\overline{OP} \perp \overline{KN}$. Find \widehat{mLM} .

$$\widehat{mLM} = \frac{1}{2}\widehat{KM}$$

$$\overline{PL}$$

KMN is a semicircle.

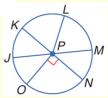
$$\widehat{mKM} + \widehat{mMN} = \widehat{mKMN}$$

Arc Addion Postulate

$$\widehat{mKM} + 46 = 180$$

 $\widehat{mMN} = m \angle NPM = 46$

$$\widehat{mKM} = 134$$


Subtract 46 from each side.

$$\widehat{mLM} = \frac{1}{2}(134)$$
 or 67

Measures of Arcs

C. In $\odot P$, $m \angle NPM = 46$, \overline{PL} , bisects $\angle KPM$, and

 $\overline{OP} \perp \overline{KN}$. Find \widehat{mJKO} .

$$m\angle NPM = 46$$

$$m\angle KPJ = m\angle NPM$$

Vercal angles are congruent.

PJ = 46 Substuon.

$$\angle KPJ + m \angle JPO = 90$$

∠KPO is a right angle.

$46 + m \angle JPO = 90$

Substuon.

Subtract 46 from each side.

$$m\angle JPO = m\widehat{JO} = 44$$

$$m\widehat{JO} + m\widehat{JKO} = 360$$

$$44 + m\widehat{JKO} = 360$$

Substuon.

$$mJKO = 316$$

Subtract 44 from each side.

Now, you try!

A. In $\odot B$, \overline{XP} and \overline{YN} are diameters, $m \angle XBN = 108$, and \overline{BZ} bisects $\angle YBP$. Find \widehat{mYZ} .

$$\widehat{mYZ} = 54^{\circ}$$

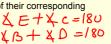
Now, you try again!

B. In $\odot B$, \overline{XP} and \overline{YN} are diameters, $m \angle XBN = 108$, and \overline{BZ} bisects $\angle YBP$. Find \widehat{mXY} .

Come on! One more time! Don't give up on me!

C. In $\odot B$, \overline{XP} and \overline{YN} are diameters, $m \angle XBN = 108$, and \overline{BZ} bisects $\angle YBP$. Find \widehat{mXNZ}

 $m\widehat{XNZ} = 234^{\circ}$

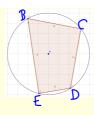

Quadrilaterals Inscribed in Circles

Facts about the Inscribed Quadrilateral

-All 4 angles add up to 360 degrees

-All 4 angles are inscribed angles -Because the angles are inscribed, they will each

equal exactly half of their corresponding Intercepted Arc. $\angle E + \angle c = 180$


A) Given Quadrilateral BCDE, and $m \angle E = 65^{\circ}$, find m BCD.

B)Use Properties of inscribed angles to show why m \angle B + m \angle D = 180.

Quadrilaterals Inscribed in Circles

Now, you try!

A) Given Quadrilateral BCDE, and m \(D = 65 \), find m \(EBC. \)

B)Use Properties of inscribed angles to show why m \angle E + m \angle C = 180.